

---

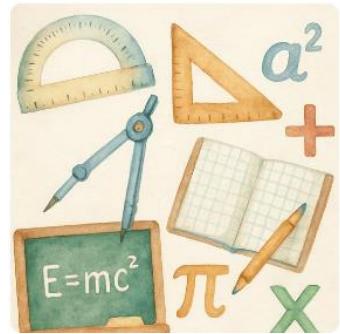
# CH X – SYSTEMS OF EQUATIONS, AN INTRODUCTION

---

Here's an example of a **system of two equations in two variables**:

$$\begin{aligned} x + y &= 10 \\ 2x - 3y &= 5 \end{aligned}$$

The *two equations* are easy to see, as are the *two variables*. The term *system* refers to the fact that these two equations are tied together — our final solution must be a pair of numbers, one for  $x$  and one for  $y$ , satisfying both equations.



## □ **WHAT DOES IT MEAN TO BE A SOLUTION OF A SYSTEM OF EQUATIONS?**

In the system above, the values  $x = 8$  and  $y = 2$  will satisfy the first equation [ $8 + 2 = 10$  ✓], but will not satisfy the second equation [ $2(8) - 3(2) = 16 - 6 = 10$ , not 5]. Therefore,  $x = 8$  and  $y = 2$  is not a solution of the *system* of equations.

Sticking with the same system of equations above, the values  $x = -8$  and  $y = -7$  will satisfy the second equation [ $2(-8) - 3(-7) = -16 + 21 = 5$  ✓] but will not satisfy the first equation [ $-8 + (-7) = -15$ , not 10]. Therefore,  $x = -8$  and  $y = -7$  is another pair of numbers which do not constitute a solution of the *system* of equations, either.

But  $x = 7$  and  $y = 3$  is a solution of the system of equations. Here's why:

$$7 + 3 = 10 \quad \text{✓} \quad \text{and} \quad 2(7) - 3(3) = 14 - 9 = 5 \quad \text{✓}$$

□ **WHERE CAN SUCH A SYSTEM OF EQUATIONS ARISE?**

How does such a system of equations come about? How about a problem like the following:

*Find two numbers whose sum is 17 and whose difference is 1.*

If you wanted to solve this problem using Algebra, you would proceed something along these lines: First give names to the two unknown numbers; maybe call them  $g$  and  $h$ .

Then the *sum* part of the problem yields the equation

$$g + h = 17$$

The *difference* part of the problem would imply that

$$g - h = 1 \quad [\text{We will assume that } g > h.]$$

We now have a **system** of two equations in two variables:  $\begin{array}{l} g + h = 17 \\ g - h = 1 \end{array}$

Among the variety of methods available to solve such a system, pay attention to the method required by your instructor.

---

## Homework

---

1. Consider the system of equations:  $\begin{array}{l} a + b = 9 \\ a - b = 7 \end{array}$ 
  - Show that  $a = 5$  and  $b = 4$  is a solution of the first equation, but is not a solution of the system.
  - Show that  $a = 20$  and  $b = 13$  is a solution of the second equation, but is not a solution of the system.
  - Show that  $a = 8$  and  $b = 1$  is a solution of the system.

2. Try to solve the system  $\begin{array}{l} u+w=12 \\ u-w=0 \end{array}$  by guessing.

Now try the system  $\begin{array}{l} 3x-17y=200 \\ -5x-12y=29 \end{array}$  by guessing (just kidding!).

3. Give an example of a system of three equations in three variables.
4. Translate the following word problem to a system of two equations in two variables: *The sum of two numbers is 25 and their product is 150.*
5. Translate the following word problem to a system of two equations in two variables: *The difference of two numbers is 25 and their quotient is 6.*

---

## Solutions

---

1. a.  $5+4=9$  ✓      But  $5-4=1 \neq 7$ .  
 b.  $20-13=7$  ✓      But  $20+13=33 \neq 9$ .  
 c.  $8+1=9$  ✓      And  $8-1=7$  ✓
2. Both variables = 6, since  $6+6=12$ , and  $6-6=0$ .
3. Something like

$$\begin{array}{l} 3x-2y+z=9 \\ 5x+y+10z=44 \\ -4x-5y-z=-2 \end{array}$$

# 4

4.  $x + y = 25$

$xy = 150$

[Of course, you can use any two variables you'd like.]

5.  $a - b = 25$

$\frac{a}{b} = 6$

[We're assuming that  $a > b$  and that  $b \neq 0$ .]



“To educate a  
man in mind and  
not in morals is to  
educate a menace  
to society.”

*Theodore Roosevelt*

(1858–1919)